The Cauchy problem of the Ward equation

Derchyi Wu

Institute of Mathematics, Academia Sinica, Taipei, Taiwan, R. O. C. Tel: 886-0223685999, email: mawudc@math.sinica.edu.tw

Abstract:

Taking a dimension reduction and a gauge fixing of the self-dual Yang-Mills equation in the space-time with signature (2, 2), one derives an integrable system, the Ward equation:

$$-(J^{-1}J_t)_t + (J^{-1}J_x)_x + (J^{-1}J_y)_y + \left\{ (J^{-1}J_t)_y - (J^{-1}J_y)_t \right\} = 0, \quad J(x,y,t) \in SU(N).$$

Our main contribution is solving the inverse scattering problem and the Cauchy problem of the Ward equation without small data constraints. More precisely, we generalize the results in [Dai-Terng, 07], [Villarroel, 90], [Fokas-Ioannidou, 01], [Dai-Terng-Uhlenbeck, 06] by showing:

- 1. Suppose the potential Q is in P. Then there is a bounded set $Z \subset \mathbf{C}$, where $Z \cap (\mathbf{C} \setminus \mathbf{R})$ is discrete in $\mathbf{C} \setminus \mathbf{R}$, such that the associated eigenfunction $\psi(x, y, t, \lambda)$ exists uniquely for $\lambda \in \mathbf{C} \setminus (\mathbf{R} \cup Z)$ and is λ -meromorphic with poles at $Z \cap (\mathbf{C} \setminus \mathbf{R})$.
- 2. A notion of scattering data v is formulated for $Q \in P$ if Z is empty. The algebraic and analytic characterization of such scattering data v is derived. Conversely, for each data v satisfying these constraints, there is a corresponding potential Q satisfying certain decay at ∞ and smoothness.
- 3. Suppose the initial potential Q_0 is in P, Z_0 , the set of poles of $\psi(x, y, 0, \lambda)$, is of finite number and $Z \subset (\mathbb{C} \setminus \mathbb{R})$. Then the Cauchy problem of the Ward equation admits a global solution Q(x, y, t) satisfying certain decay at ∞ and smoothness.

A one-to-one correspondence between Q and J, a precise definition of the potential space P, and a description of the smoothness and decay at ∞ are provided in [Wu, 08], [Wu, 09]. Moreover, important algebraic properties of the Lax pair, (i) derivation property; (ii) translating invariant property; (iii) the principal part being equivalent to a $\overline{\partial}$ -operator, are used in resolving the large data difficulty. Hence the Result 1, and the existence of Q in 2 are reduced to solving two types of Riemann-Hilbert problem with large data.

If the set of poles of $\psi(x, y, 0, \lambda)$ is of finite number and contained in $\mathbb{C}\backslash\mathbb{R}$, then we use Result 2 to decompose $\psi(x, y, 0, \lambda)$ as two factorization: one factorization has a rational factor g_0 as its tail, and the other has a holomorphic (in $\mathbb{C}\backslash\mathbb{R}$) tail f_0 . Using f_0 and g_0 as initial eigenfunctions, we then solve the Cauchy problems of the Ward equation by Result 2 and the theory of Backlund transformation established in [Dai-Terng,07]. From these two solutions, we can construct the solution of Result 3 by using Backlund transformation again.